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Abstract. Using the LMTO-ASA (linearized muffin-tin orbital plus atomic-sphere approxima-
tion) method, we have calculated the structural and electronic properties of NbIrSn and NbIrSb.
In contrast to the experimental finding, we find that NbIrSn has a band gap in excess of 1 eV.
On the other hand, NbIrSb is a non-magnetic metal. The calculated lattice constants are in very
good agreement with the experimental values. Removing the Ir atoms leads to larger contrac-
tions of the lattice constants and both materials become non-magnetic metals, whereas adding
one extra Ir atom per formula unit leads to some expansion and, once again, the materials become
non-magnetic metals. Finally, using the FLAPW (full-potential linearized-augmented-plane-wave)
method as implemented in the WIEN programs we found that the results were essentially unaffected
upon inclusion of the full potential or of spin–orbit couplings.

1. Introduction

A number of ternary compounds of the stoichiometry AB2C crystallize in the Heusler-alloy
structure, whereas others with the stoichiometry ABC crystallize in the semi-Heusler-alloy
structure. Both structures can be considered as consisting of four interpenetrating fcc lattices
(cf. figure 1) with, e.g., the origin of the A lattice at(0, 0, 0), that of the C lattice at(a/2, 0, 0),
and, for the semi-Heusler alloys, the B lattice has its origin at(a/4, a/4, a/4), whereas the
lattice at(a/4, a/4, 3a/4) is empty. For the Heusler alloys the vacancy sites are also occupied
by B atoms.

Many of the Heusler and semi-Heusler alloys contain 3d transition-metal atoms and they
are often either semiconductors with relatively large band gaps or (in some cases, magnetic)
metals (see, e.g., [1–13]). Furthermore, some of the semi-Heusler alloys possess the unusual
property that the electrons closest to the Fermi level are completely spin polarized with the
result that the material is semiconducting for one spin component and metallic for the other [1].

Very recently Hohlet al [14] reported the synthesis of two new members of the semi-
Heusler-alloy class, i.e. NbIrSn and NbIrSb. Compared with most other semi-Heusler alloys,
these compounds contain no 3d transition-metal atoms and, moreover, for NbIrSn the authors
reported an unusually small band gap, i.e., 0.28 eV, obtained by analysing the temperature
dependence of the Seebeck coefficient. For NbIrSb the analysis was less unambiguous.

In this communication we shall extend the experimental analysis by reporting results
of first-principles, density-functional calculations on the two semi-Heusler alloys NbIrSn and
NbIrSb. We shall only consider the ordered structures of figure 1. Experimentally, the structure
was determined from powder-diffraction measurements, but in such experiments it is very
difficult to distinguish between ordered and random alloys. The possibility can therefore not
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Figure 1. The structure of the Heusler and semi-Heusler alloys. The large white and black spheres
represent A and C atoms. All small spheres represent B atoms for the Heusler alloys, whereas only
half of them (all black or all white spheres) represent B atoms for the semi-Heusler alloys.

be excluded that the experimental samples contain some disorder. For instance, some of the
vacancy sites may be occupied by B atoms (here Ir) or, alternatively, some of the B sites may
be vacant. In order to get a first insight into the effects of such structural modifications we
have here also considered the hypothetical structures NbSn and NbSb as well as NbIr2Sn and
NbIr2Sb obtained by either removing all Ir atoms or by occupying all vacancy sites with Ir
atoms. In the latter case we obtain an ordered Heusler alloy.

We shall concentrate on three issues: the optimized lattice constant as a function of
composition, the electronic density of states, in particular closest to the Fermi level, as a
function of composition, and the possible existence of a spin polarization. To this end we have
applied two density-functional methods that will be briefly described in section 2. Section 3
contains the results and a conclusion is offered in section 4.

2. Computational methods

For each of the (six) compounds we first optimized the lattice constant using the LMTO-
ASA (linearized muffin-tin orbital plus atomic-sphere approximation) method [15–17] without
allowing for any spin polarization. Subsequently, for the optimized structure, we allowed
the electrons to polarize, still using the LMTO-ASA method. Finally, for the two semi-
Heusler alloys, we used the FLAPW (full-potential linearized-augmented-plane-wave) method
as implemented in the WIEN programs [18] in checking whether the ASA of the LMTO-ASA
method leads to unacceptable approximations in the density of states of the optimized structures
as well as in studying the role of spin–orbit couplings, and to check whether this more accurate
method produces other results concerning a possible spin polarization.

Both methods are based on the density-functional formalism of Hohenberg and Kohn [19]
in the formulation of Kohn and Sham [20]. Then, the problem of calculating the total electronic
energy is recast into that of solving the single-particle equations[

− h̄2

2m
∇2 + V (Er)

]
ψi(Er) = εiψi(Er). (1)
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Here, the potential

V (Er) = Vn(Er) + VC(Er) + Vxc(Er) + Vsr(Er) (2)

contains one term from the Coulomb potential of the nuclei, one from that of the electrons,
the exchange–correlation potential (for which we in the present work use the local-density
approximation of von Barth and Hedin [21]), and the scalar-relativistic potential (i.e., all
relativistic effects up to second order in 1/c excluding the spin–orbit couplings).

For closely packed systems like those of the present study, the potential is approximately
spherically symmetric about each site. Keeping only that part, one may solve equation (1)
numerically inside (muffin-tin) spheres circumscribing each site for fixed energiesεν . For a
given atom and(l, m), εν is chosen as the centre of gravity of the atom- and angle-decomposed
density of states. These functions together with their derivatives with respect toεν form a
set of (numerically given) basis functions that by construction are good approximations to
the exact solutions to equation (1). Outside the spheres they are augmented continuously and
differentiably with either spherical or plane waves.

Within the LMTO-ASA method the spheres are expanded so that their total volume equals
that of the crystal and spherical waves are used in the interstitial region. Furthermore, only
the spherically symmetric part of the potential is kept throughout the calculations. Finally,
the effects of the overlaps of the spheres and of the interstitial region are included only
perturbatively, whereby a highly efficient method results. For the systems of the present
study we introduced so-called empty spheres at all sites of figure 1 that were not occupied by
real atoms in order to reduce the effects of the sphere overlaps and of the interstitial region.

On the other hand, the WIEN programs are based on the FLAPW method and include the
full potential in the calculations. They do not allow the spheres to overlap and employ plane
waves in the interstitial region. Thereby, the method becomes computationally somewhat more
demanding than the LMTO-ASA method, but also more accurate.

In the LMTO calculations we used 91Ek-points in the irreducible part of the Brillouin
zone, whereas we used 30Ek-points in the WIEN calculations. Furthermore, in the LMTO
calculations all (occupied and empty) spheres had the same radii except for the calculations
on the NbSn and NbSb systems for which the radii of the empty spheres were 20.5% smaller
than those of the other spheres. For the WIEN calculations the radii of the (non-overlapping)
spheres were kept atsmt = 2.5 au. In the LMTO calculations, basis functions up tolmax = 3
were included, but the Yb core of Ir and the Kr core of Nb, Sn, and Sb were kept frozen. In
the WIEN calculations, all orbitals were allowed to relax, and in the interstitial region plane
waves up tosmtkmax = 8 were included. Finally, inside the spheres we used basis functions up
to lmax = 10.

3. Results

In table 1 we list the optimized lattice constants as obtained with the LMTO method together
with the two experimental values for the semi-Heusler alloys. We observe a very good
agreement between the experimental and theoretical values with, however, the difference that
the calculations predict that the lattice constant for all Sn-based compounds is smaller than
that of the equivalent Sb-based compounds in contrast to the experimental finding. Since the
covalent radius of Sn is larger than that of Sb [22, 23] one would intuitively expect that the
lattice constant of NbIrSn is larger than that of NbIrSb, in agreement with the experimental
observations and in contrast to the theoretical ones, although the differences are indeed small.
Finally, table 1 shows that for NbIrSn we find a small overestimate in the bond lengths, which
is atypical for local-density calculations.
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Table 1. Optimized (aopt) and experimental (aexp) values for the lattice constant together with the
number of electrons inside the various muffin-tin spheres,qX. qX is the value for atom X (Sx being
Sn and Sb and es being the empty spheres) and is calculated relative to the value for the neutral
atom. The results were obtained with the LMTO method.

Compound aopt (au) aexp (au) qNb qIr qSx qes

NbIrSn 11.59 11.68 −0.96 0.27 −0.69 1.38

NbIr2Sn 12.06 −0.42 0.37 −0.31

NbSn 10.36 −1.17 −0.75 0.96

NbIrSb 11.66 11.62 −0.86 0.32 −0.84 1.38

NbIr2Sb 12.13 −0.42 0.44 −0.45

NbSb 10.47 −1.08 −0.87 0.97

Adding one more Ir atom per formula unit (leading to AB2C) gives only a smaller expansion
of the unit cell. This may not be that surprising since the size of the vacancies for the ABC
system is as large as that of the Ir atoms of that system and, therefore, the expansion is mainly
determined by redistributions of the electrons. This can be quantified through the number of
electrons inside the respective atomic spheres (cf. table 1). These show that about half of the
electrons of the Nb and Sn/Sb atoms that were leaking out for the ABC systems are put back
into those spheres for the AB2C spheres.

On the other hand, when removing the Ir atoms (leading to AC) the lattice constant is
considerably reduced. Although the Nb and Sb/Sn spheres in these calculations are larger,
even fewer electrons are found inside those as for the ABC systems, as seen in table 1.

These changes in the electron density can also be observed in figure 2, where we show the
electron density of the six compounds in the (1, 1, 0) plane. A careful inspection shows, e.g.,
how the electron density centred about the Nb atoms extends into the regions of the vacancies
for the systems containing such vacancies.

The density of states (figure 3) shows that only one compound, NbIrSn, is semiconducting,
whereas all others are metallic according to the LMTO calculations. When repeating the
calculations for the optimized lattice constant but giving the systems small initial spin
polarizations, all calculations converged to the unpolarized results of figure 3, which implies
that the systems are non-magnetic.

The band gap of NbIrSn is calculated to be about 1 eV, but since density-functional
calculations tend to underestimate this quantity, a realistic value is roughly 1.5 eV (a similar
correction applied for crystalline silicon for which density-functional calculations predict a
band gap of 0.52 eV compared with the experimental value of 1.17 eV [24]). This value is
considerably larger than the experimental one of 0.28 eV [14], but is comparable with the
values for other semiconducting semi-Heusler and Heusler alloys. When the material contains
a small fraction of impurities and assuming that a rigid-band model is valid, the Fermi level
will be shifted such that it appears in a region of a finite density of states. On the other hand,
if some of the vacancies are occupied by Ir atoms and some of the Ir sites become vacant, the
density of states will, to a first approximation, be a superposition of that of figure 3(a) plus
small coefficients times those of figures 3(b) and 3(c) and, once again, there will be a finite
density of states at the Fermi level.

When the number of impurities is small, they will induce states in the gap of figure 3(a).
But since these states are localized to the regions of the impurities they will rather act as
traps for transport properties and can therefore not explain the temperature dependence of
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Figure 2. The total electron density for (left column) the Sn-based and (right column) the Sb-based
compounds for (top) ABC, (middle) AB2C, and (bottom) AC. The figures are shown in the (1, 1, 0)
plane of figure 1, and include 41 equally spaced values between 0.0 and 0.3 au. Sn and Sb atoms
are placed at the corners and Nb atoms at the centres of the horizontal axes. The results have been
obtained with the LMTO method.

the Seebeck coefficient which suggests the existence of a small band gap. Thus, we have
to conclude that the results of figure 3 for the Sn-based systems are not able to explain the
experimental band gap.

For the Sb-based systems we find that they are all metallic. Moreover, the Fermi level
appears in all cases at a position of a relatively high density of states, and, for NbIrSb, only for
a large doping concentration can it be shifted to either a gap (p doping) or to a lower density
of states (n doping).

In figure 4 we show the decomposed densities of states for the two ABC compounds. They
show that the lowest valence bands (below roughly−6 to −10 eV) are mainly due to Sn or
Sb functions, and that the lowest conduction bands (just above the energy zero) are due to Nb
functions. The absolutely highest valence bands have large components on Nb, too, but also
some contributions from Sn or Sb and Ir, whereas Ir functions are responsible for a major part
of the sharp features in the broad energy range of occupied orbitals from about−6 eV to the
Fermi level. Finally, the empty spheres contribute only insignificantly to the total density of
states.

As a first approximation, the overall features of figure 4 prevail also for the other
compounds, which makes an interpretation of the results of figure 3 obvious. There are,
however, modifications. For example, the size of the gap between the lowest valence band
and the next higher one (i.e., in the energy range−6 to−10 eV), as well as the position of the
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Figure 3. The valence-electron density of states for the optimized structures of (a) NbIrSn,
(b) NbIr2Sn, (c) NbSn, (d) NbIrSb, (e) NbIr2Sb, and (f ) NbSb. The vertical dashed lines mark
the Fermi level. The results have been obtained with the LMTO method. Please notice that the
ordinate scales of the different panels differ.

lowest valence band relative to the Fermi level, depends on the stoichiometry.
The band structures of the two semi-Heusler alloys are shown in figure 5. They are very

similar and, to a first approximation, the changes when passing from Sn to Sb can be treated
within a rigid-band approximation. NbIrSn is seen to be an indirect-gap semiconductor, and
in particular the highest occupied band is very flat.

The LMTO calculations have led to results for the semi-Heusler alloys that are very similar
to those for other semi-Heusler alloys, although there are some discrepancies compared with
the experimental findings, in particular concerning the size of the gap of NbIrSn. Mohnet al
[8] found that in some cases the ASA could lead to wrong results (e.g., for magnetic properties)
for such compounds. Therefore, we also carried out full-potential calculations using the WIEN
programs, but only for those lattice constants that were optimized with the LMTO programs
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Figure 4. The valence-electron density of states for the optimized structures of ((a)–(d)) NbIrSn
and ((e)–(h)) NbIrSb decomposed into the contributions from ((a), (e)) Nb, ((b), (f )) Ir, (c) Sn,
(g) Sb, and ((d), (h)) the empty spheres. The vertical dashed lines mark the Fermi level. The results
have been obtained with the LMTO method. Please notice that the ordinate scales of the different
panels differ.
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Figure 5. The band structures for the optimized structures of (a) NbIrSn and (b) NbIrSb along
some high-symmetry lines. The results have been obtained with the LMTO method, and G= 0.

for the two semi-Heusler alloys. Figures 6(a) and 6(c) show the resulting density of states
and compared with the similar results from the LMTO calculations (figures 2(a) and 2(d)) the
differences are only insignificant and mainly due to differences inEk-space sampling and in
the energy mesh. Subsequently, we allowed for a spin polarization, but in this case also the
calculations converged to a non-magnetic structure.

Finally, we checked whether the inclusion of spin–orbit couplings would change the results
but, as seen in figures 6(b) and 6(d), this is not the case. Ir is the heaviest of the elements
involved and, therefore, the largest changes in the density of states occur where the Ir-centred
functions have their largest contributions, which is in the centre of the upper occupied valence
bands; cf. figure 3. In total, the spin–orbit couplings tend to lead to some smearing out of the
features of the density of states without leading to any overall broadening or changes in the
gaps.
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Figure 6. Densities of states for ((a), (b)) NbIrSn and ((c), (d)) NbIrSb ((a), (c)) without and
((b), (d)) with inclusion of spin–orbit couplings. The results have been obtained with the WIEN
programs and the vertical dashed lines mark the Fermi levels which have been placed at the energy
zero. Please notice that the ordinate scales of the different panels differ.

4. Conclusions

Using two density-functional methods we have calculated electronic and structural properties
of the two title compounds in their ordered phases. We found that NbIrSn is a semiconductor
with a gap that should be in excess of 1 eV, whereas NbIrSb is a non-magnetic metal. An
accurate treatment of all effects of the potential and of spin–orbit couplings does not change
these conclusions. The experimentally produced materials may be less ordered. This could,
e.g., lead to local arrangements of the type NbSn and NbIr2Sn (or NbSb and NbIr2Sb) and we,
therefore, considered also the ordered structures of those systems. These were found in all
cases to be non-magnetic metals with lattice constants that are somewhat smaller for NbSn and
NbSb and slightly larger for NbIr2Sn and NbIr2Sb when compared with NbIrSn and NbIrSb.
However, the results for these systems do not support the suggestion that the experimentally
found small value of the band gap of NbIrSn is due to some disorder or impurities. Finally, the
bands are fairly flat suggesting that these materials possess poor transport properties. Disorder
will worsen these even further.
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